Coverage Report

Created: 2025-08-03 09:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/data/zyw/opt-ci/actions-runner/_work/llvm-opt-benchmark/llvm-opt-benchmark/llvm/llvm-project/llvm/lib/IR/ConstantFold.cpp
Line
Count
Source
1
//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements folding of constants for LLVM.  This implements the
10
// (internal) ConstantFold.h interface, which is used by the
11
// ConstantExpr::get* methods to automatically fold constants when possible.
12
//
13
// The current constant folding implementation is implemented in two pieces: the
14
// pieces that don't need DataLayout, and the pieces that do. This is to avoid
15
// a dependence in IR on Target.
16
//
17
//===----------------------------------------------------------------------===//
18
19
#include "llvm/IR/ConstantFold.h"
20
#include "llvm/ADT/APSInt.h"
21
#include "llvm/ADT/SmallVector.h"
22
#include "llvm/IR/Constants.h"
23
#include "llvm/IR/DerivedTypes.h"
24
#include "llvm/IR/Function.h"
25
#include "llvm/IR/GlobalAlias.h"
26
#include "llvm/IR/GlobalVariable.h"
27
#include "llvm/IR/Instructions.h"
28
#include "llvm/IR/Module.h"
29
#include "llvm/IR/Operator.h"
30
#include "llvm/IR/PatternMatch.h"
31
#include "llvm/Support/ErrorHandling.h"
32
using namespace llvm;
33
using namespace llvm::PatternMatch;
34
35
//===----------------------------------------------------------------------===//
36
//                ConstantFold*Instruction Implementations
37
//===----------------------------------------------------------------------===//
38
39
/// This function determines which opcode to use to fold two constant cast
40
/// expressions together. It uses CastInst::isEliminableCastPair to determine
41
/// the opcode. Consequently its just a wrapper around that function.
42
/// Determine if it is valid to fold a cast of a cast
43
static unsigned
44
foldConstantCastPair(
45
  unsigned opc,          ///< opcode of the second cast constant expression
46
  ConstantExpr *Op,      ///< the first cast constant expression
47
  Type *DstTy            ///< destination type of the first cast
48
1.71M
) {
49
1.71M
  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
50
1.71M
  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
51
1.71M
  assert(CastInst::isCast(opc) && "Invalid cast opcode");
52
53
  // The types and opcodes for the two Cast constant expressions
54
1.71M
  Type *SrcTy = Op->getOperand(0)->getType();
55
1.71M
  Type *MidTy = Op->getType();
56
1.71M
  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
57
1.71M
  Instruction::CastOps secondOp = Instruction::CastOps(opc);
58
59
  // Assume that pointers are never more than 64 bits wide, and only use this
60
  // for the middle type. Otherwise we could end up folding away illegal
61
  // bitcasts between address spaces with different sizes.
62
1.71M
  IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
63
64
  // Let CastInst::isEliminableCastPair do the heavy lifting.
65
1.71M
  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
66
1.71M
                                        nullptr, FakeIntPtrTy, nullptr);
67
1.71M
}
68
69
450k
static Constant *FoldBitCast(Constant *V, Type *DestTy) {
70
450k
  Type *SrcTy = V->getType();
71
450k
  if (SrcTy == DestTy)
72
0
    return V; // no-op cast
73
74
450k
  if (V->isAllOnesValue())
75
4.62k
    return Constant::getAllOnesValue(DestTy);
76
77
  // Handle ConstantInt -> ConstantFP
78
445k
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
79
    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
80
    // This allows for other simplifications (although some of them
81
    // can only be handled by Analysis/ConstantFolding.cpp).
82
23.0k
    if (isa<VectorType>(DestTy) && 
!isa<VectorType>(SrcTy)20
)
83
20
      return ConstantExpr::getBitCast(ConstantVector::get(V), DestTy);
84
85
    // Make sure dest type is compatible with the folded fp constant.
86
    // See note below regarding the PPC_FP128 restriction.
87
23.0k
    if (!DestTy->isFPOrFPVectorTy() || DestTy->isPPC_FP128Ty() ||
88
23.0k
        DestTy->getScalarSizeInBits() != SrcTy->getScalarSizeInBits())
89
0
      return nullptr;
90
91
23.0k
    return ConstantFP::get(
92
23.0k
        DestTy,
93
23.0k
        APFloat(DestTy->getScalarType()->getFltSemantics(), CI->getValue()));
94
23.0k
  }
95
96
  // Handle ConstantFP -> ConstantInt
97
422k
  if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
98
    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
99
    // This allows for other simplifications (although some of them
100
    // can only be handled by Analysis/ConstantFolding.cpp).
101
421k
    if (isa<VectorType>(DestTy) && 
!isa<VectorType>(SrcTy)0
)
102
0
      return ConstantExpr::getBitCast(ConstantVector::get(V), DestTy);
103
104
    // PPC_FP128 is really the sum of two consecutive doubles, where the first
105
    // double is always stored first in memory, regardless of the target
106
    // endianness. The memory layout of i128, however, depends on the target
107
    // endianness, and so we can't fold this without target endianness
108
    // information. This should instead be handled by
109
    // Analysis/ConstantFolding.cpp
110
421k
    if (SrcTy->isPPC_FP128Ty())
111
0
      return nullptr;
112
113
    // Make sure dest type is compatible with the folded integer constant.
114
421k
    if (!DestTy->isIntOrIntVectorTy() ||
115
421k
        DestTy->getScalarSizeInBits() != SrcTy->getScalarSizeInBits())
116
0
      return nullptr;
117
118
421k
    return ConstantInt::get(DestTy, FP->getValueAPF().bitcastToAPInt());
119
421k
  }
120
121
1.73k
  return nullptr;
122
422k
}
123
124
static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V,
125
1.73M
                                          Type *DestTy) {
126
1.73M
  return ConstantExpr::isDesirableCastOp(opc)
127
1.73M
             ? 
ConstantExpr::getCast(opc, V, DestTy)1.72M
128
1.73M
             : 
ConstantFoldCastInstruction(opc, V, DestTy)14.9k
;
129
1.73M
}
130
131
Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
132
64.6M
                                            Type *DestTy) {
133
64.6M
  if (isa<PoisonValue>(V))
134
112k
    return PoisonValue::get(DestTy);
135
136
64.5M
  if (isa<UndefValue>(V)) {
137
    // zext(undef) = 0, because the top bits will be zero.
138
    // sext(undef) = 0, because the top bits will all be the same.
139
    // [us]itofp(undef) = 0, because the result value is bounded.
140
184k
    if (opc == Instruction::ZExt || 
opc == Instruction::SExt88.7k
||
141
184k
        
opc == Instruction::UIToFP88.0k
||
opc == Instruction::SIToFP87.9k
)
142
97.0k
      return Constant::getNullValue(DestTy);
143
87.7k
    return UndefValue::get(DestTy);
144
184k
  }
145
146
64.3M
  if (V->isNullValue() && 
!DestTy->isX86_AMXTy()26.4M
&&
147
64.3M
      
opc != Instruction::AddrSpaceCast26.4M
)
148
26.4M
    return Constant::getNullValue(DestTy);
149
150
  // If the cast operand is a constant expression, there's a few things we can
151
  // do to try to simplify it.
152
37.9M
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
153
7.22M
    if (CE->isCast()) {
154
      // Try hard to fold cast of cast because they are often eliminable.
155
1.71M
      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
156
1.69M
        return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy);
157
1.71M
    }
158
7.22M
  }
159
160
  // If the cast operand is a constant vector, perform the cast by
161
  // operating on each element. In the cast of bitcasts, the element
162
  // count may be mismatched; don't attempt to handle that here.
163
36.2M
  if (DestTy->isVectorTy() && 
V->getType()->isVectorTy()43.0k
&&
164
36.2M
      cast<VectorType>(DestTy)->getElementCount() ==
165
43.0k
          cast<VectorType>(V->getType())->getElementCount()) {
166
37.2k
    VectorType *DestVecTy = cast<VectorType>(DestTy);
167
37.2k
    Type *DstEltTy = DestVecTy->getElementType();
168
    // Fast path for splatted constants.
169
37.2k
    if (Constant *Splat = V->getSplatValue()) {
170
36.3k
      Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy);
171
36.3k
      if (!Res)
172
0
        return nullptr;
173
36.3k
      return ConstantVector::getSplat(
174
36.3k
          cast<VectorType>(DestTy)->getElementCount(), Res);
175
36.3k
    }
176
949
    if (isa<ScalableVectorType>(DestTy))
177
0
      return nullptr;
178
949
    SmallVector<Constant *, 16> res;
179
949
    Type *Ty = IntegerType::get(V->getContext(), 32);
180
949
    for (unsigned i = 0,
181
949
                  e = cast<FixedVectorType>(V->getType())->getNumElements();
182
3.77k
         i != e; 
++i2.82k
) {
183
2.82k
      Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
184
2.82k
      Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy);
185
2.82k
      if (!Casted)
186
0
        return nullptr;
187
2.82k
      res.push_back(Casted);
188
2.82k
    }
189
949
    return ConstantVector::get(res);
190
949
  }
191
192
  // We actually have to do a cast now. Perform the cast according to the
193
  // opcode specified.
194
36.1M
  switch (opc) {
195
0
  default:
196
0
    llvm_unreachable("Failed to cast constant expression");
197
11.3k
  case Instruction::FPTrunc:
198
17.1k
  case Instruction::FPExt:
199
17.1k
    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
200
17.1k
      bool ignored;
201
17.1k
      APFloat Val = FPC->getValueAPF();
202
17.1k
      Val.convert(DestTy->getScalarType()->getFltSemantics(),
203
17.1k
                  APFloat::rmNearestTiesToEven, &ignored);
204
17.1k
      return ConstantFP::get(DestTy, Val);
205
17.1k
    }
206
0
    return nullptr; // Can't fold.
207
148k
  case Instruction::FPToUI:
208
300k
  case Instruction::FPToSI:
209
300k
    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
210
300k
      const APFloat &V = FPC->getValueAPF();
211
300k
      bool ignored;
212
300k
      APSInt IntVal(DestTy->getScalarSizeInBits(), opc == Instruction::FPToUI);
213
300k
      if (APFloat::opInvalidOp ==
214
300k
          V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
215
        // Undefined behavior invoked - the destination type can't represent
216
        // the input constant.
217
15.0k
        return PoisonValue::get(DestTy);
218
15.0k
      }
219
285k
      return ConstantInt::get(DestTy, IntVal);
220
300k
    }
221
0
    return nullptr; // Can't fold.
222
62.5k
  case Instruction::UIToFP:
223
138k
  case Instruction::SIToFP:
224
138k
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
225
138k
      const APInt &api = CI->getValue();
226
138k
      APFloat apf(DestTy->getScalarType()->getFltSemantics(),
227
138k
                  APInt::getZero(DestTy->getScalarSizeInBits()));
228
138k
      apf.convertFromAPInt(api, opc==Instruction::SIToFP,
229
138k
                           APFloat::rmNearestTiesToEven);
230
138k
      return ConstantFP::get(DestTy, apf);
231
138k
    }
232
0
    return nullptr;
233
7.51M
  case Instruction::ZExt:
234
7.51M
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
235
7.50M
      uint32_t BitWidth = DestTy->getScalarSizeInBits();
236
7.50M
      return ConstantInt::get(DestTy, CI->getValue().zext(BitWidth));
237
7.50M
    }
238
13.6k
    return nullptr;
239
2.04M
  case Instruction::SExt:
240
2.04M
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
241
2.04M
      uint32_t BitWidth = DestTy->getScalarSizeInBits();
242
2.04M
      return ConstantInt::get(DestTy, CI->getValue().sext(BitWidth));
243
2.04M
    }
244
2.36k
    return nullptr;
245
16.8M
  case Instruction::Trunc: {
246
16.8M
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
247
16.8M
      uint32_t BitWidth = DestTy->getScalarSizeInBits();
248
16.8M
      return ConstantInt::get(DestTy, CI->getValue().trunc(BitWidth));
249
16.8M
    }
250
251
295
    return nullptr;
252
16.8M
  }
253
450k
  case Instruction::BitCast:
254
450k
    return FoldBitCast(V, DestTy);
255
0
  case Instruction::AddrSpaceCast:
256
3.00M
  case Instruction::IntToPtr:
257
8.87M
  case Instruction::PtrToInt:
258
8.87M
    return nullptr;
259
36.1M
  }
260
36.1M
}
261
262
Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
263
504k
                                              Constant *V1, Constant *V2) {
264
  // Check for i1 and vector true/false conditions.
265
504k
  if (Cond->isNullValue()) 
return V2274k
;
266
230k
  if (Cond->isAllOnesValue()) 
return V1230k
;
267
268
  // If the condition is a vector constant, fold the result elementwise.
269
399
  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
270
10
    auto *V1VTy = CondV->getType();
271
10
    SmallVector<Constant*, 16> Result;
272
10
    Type *Ty = IntegerType::get(CondV->getContext(), 32);
273
238
    for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; 
++i228
) {
274
228
      Constant *V;
275
228
      Constant *V1Element = ConstantExpr::getExtractElement(V1,
276
228
                                                    ConstantInt::get(Ty, i));
277
228
      Constant *V2Element = ConstantExpr::getExtractElement(V2,
278
228
                                                    ConstantInt::get(Ty, i));
279
228
      auto *Cond = cast<Constant>(CondV->getOperand(i));
280
228
      if (isa<PoisonValue>(Cond)) {
281
0
        V = PoisonValue::get(V1Element->getType());
282
228
      } else if (V1Element == V2Element) {
283
157
        V = V1Element;
284
157
      } else 
if (71
isa<UndefValue>(Cond)71
) {
285
0
        V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
286
71
      } else {
287
71
        if (!isa<ConstantInt>(Cond)) 
break0
;
288
71
        V = Cond->isNullValue() ? 
V2Element12
:
V1Element59
;
289
71
      }
290
228
      Result.push_back(V);
291
228
    }
292
293
    // If we were able to build the vector, return it.
294
10
    if (Result.size() == V1VTy->getNumElements())
295
10
      return ConstantVector::get(Result);
296
10
  }
297
298
389
  if (isa<PoisonValue>(Cond))
299
130
    return PoisonValue::get(V1->getType());
300
301
259
  if (isa<UndefValue>(Cond)) {
302
259
    if (isa<UndefValue>(V1)) 
return V1175
;
303
84
    return V2;
304
259
  }
305
306
0
  if (V1 == V2) return V1;
307
308
0
  if (isa<PoisonValue>(V1))
309
0
    return V2;
310
0
  if (isa<PoisonValue>(V2))
311
0
    return V1;
312
313
  // If the true or false value is undef, we can fold to the other value as
314
  // long as the other value isn't poison.
315
0
  auto NotPoison = [](Constant *C) {
316
0
    if (isa<PoisonValue>(C))
317
0
      return false;
318
319
    // TODO: We can analyze ConstExpr by opcode to determine if there is any
320
    //       possibility of poison.
321
0
    if (isa<ConstantExpr>(C))
322
0
      return false;
323
324
0
    if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) ||
325
0
        isa<ConstantPointerNull>(C) || isa<Function>(C))
326
0
      return true;
327
328
0
    if (C->getType()->isVectorTy())
329
0
      return !C->containsPoisonElement() && !C->containsConstantExpression();
330
331
    // TODO: Recursively analyze aggregates or other constants.
332
0
    return false;
333
0
  };
334
0
  if (isa<UndefValue>(V1) && NotPoison(V2)) return V2;
335
0
  if (isa<UndefValue>(V2) && NotPoison(V1)) return V1;
336
337
0
  return nullptr;
338
0
}
339
340
Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
341
1.98M
                                                      Constant *Idx) {
342
1.98M
  auto *ValVTy = cast<VectorType>(Val->getType());
343
344
  // extractelt poison, C -> poison
345
  // extractelt C, undef -> poison
346
1.98M
  if (isa<PoisonValue>(Val) || 
isa<UndefValue>(Idx)1.72M
)
347
259k
    return PoisonValue::get(ValVTy->getElementType());
348
349
  // extractelt undef, C -> undef
350
1.72M
  if (isa<UndefValue>(Val))
351
30.7k
    return UndefValue::get(ValVTy->getElementType());
352
353
1.69M
  auto *CIdx = dyn_cast<ConstantInt>(Idx);
354
1.69M
  if (!CIdx)
355
0
    return nullptr;
356
357
1.69M
  if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
358
    // ee({w,x,y,z}, wrong_value) -> poison
359
1.69M
    if (CIdx->uge(ValFVTy->getNumElements()))
360
0
      return PoisonValue::get(ValFVTy->getElementType());
361
1.69M
  }
362
363
  // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
364
1.69M
  if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
365
84
    if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
366
0
      SmallVector<Constant *, 8> Ops;
367
0
      Ops.reserve(CE->getNumOperands());
368
0
      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
369
0
        Constant *Op = CE->getOperand(i);
370
0
        if (Op->getType()->isVectorTy()) {
371
0
          Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
372
0
          if (!ScalarOp)
373
0
            return nullptr;
374
0
          Ops.push_back(ScalarOp);
375
0
        } else
376
0
          Ops.push_back(Op);
377
0
      }
378
0
      return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
379
0
                                 GEP->getSourceElementType());
380
84
    } else if (CE->getOpcode() == Instruction::InsertElement) {
381
0
      if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) {
382
0
        if (APSInt::isSameValue(APSInt(IEIdx->getValue()),
383
0
                                APSInt(CIdx->getValue()))) {
384
0
          return CE->getOperand(1);
385
0
        } else {
386
0
          return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx);
387
0
        }
388
0
      }
389
0
    }
390
84
  }
391
392
1.69M
  if (Constant *C = Val->getAggregateElement(CIdx))
393
1.69M
    return C;
394
395
  // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
396
84
  if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
397
84
    if (Constant *SplatVal = Val->getSplatValue())
398
0
      return SplatVal;
399
84
  }
400
401
84
  return nullptr;
402
84
}
403
404
Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
405
                                                     Constant *Elt,
406
154k
                                                     Constant *Idx) {
407
154k
  if (isa<UndefValue>(Idx))
408
0
    return PoisonValue::get(Val->getType());
409
410
  // Inserting null into all zeros is still all zeros.
411
  // TODO: This is true for undef and poison splats too.
412
154k
  if (isa<ConstantAggregateZero>(Val) && 
Elt->isNullValue()188
)
413
141
    return Val;
414
415
154k
  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
416
154k
  if (!CIdx) 
return nullptr0
;
417
418
  // Do not iterate on scalable vector. The num of elements is unknown at
419
  // compile-time.
420
154k
  if (isa<ScalableVectorType>(Val->getType()))
421
0
    return nullptr;
422
423
154k
  auto *ValTy = cast<FixedVectorType>(Val->getType());
424
425
154k
  unsigned NumElts = ValTy->getNumElements();
426
154k
  if (CIdx->uge(NumElts))
427
0
    return PoisonValue::get(Val->getType());
428
429
154k
  SmallVector<Constant*, 16> Result;
430
154k
  Result.reserve(NumElts);
431
154k
  auto *Ty = Type::getInt32Ty(Val->getContext());
432
154k
  uint64_t IdxVal = CIdx->getZExtValue();
433
2.18M
  for (unsigned i = 0; i != NumElts; 
++i2.02M
) {
434
2.02M
    if (i == IdxVal) {
435
154k
      Result.push_back(Elt);
436
154k
      continue;
437
154k
    }
438
439
1.87M
    Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
440
1.87M
    Result.push_back(C);
441
1.87M
  }
442
443
154k
  return ConstantVector::get(Result);
444
154k
}
445
446
Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
447
38.7k
                                                     ArrayRef<int> Mask) {
448
38.7k
  auto *V1VTy = cast<VectorType>(V1->getType());
449
38.7k
  unsigned MaskNumElts = Mask.size();
450
38.7k
  auto MaskEltCount =
451
38.7k
      ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy));
452
38.7k
  Type *EltTy = V1VTy->getElementType();
453
454
  // Poison shuffle mask -> poison value.
455
38.9k
  if (
all_of(Mask, [](int Elt) 38.7k
{ return Elt == PoisonMaskElem; })) {
456
0
    return PoisonValue::get(VectorType::get(EltTy, MaskEltCount));
457
0
  }
458
459
  // If the mask is all zeros this is a splat, no need to go through all
460
  // elements.
461
230k
  
if (38.7k
all_of(Mask, [](int Elt) 38.7k
{ return Elt == 0; })) {
462
26.8k
    Type *Ty = IntegerType::get(V1->getContext(), 32);
463
26.8k
    Constant *Elt =
464
26.8k
        ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
465
466
    // For scalable vectors, make sure this doesn't fold back into a
467
    // shufflevector.
468
26.8k
    if (!MaskEltCount.isScalable() || 
Elt->isNullValue()0
||
isa<UndefValue>(Elt)0
)
469
26.8k
      return ConstantVector::getSplat(MaskEltCount, Elt);
470
26.8k
  }
471
472
  // Do not iterate on scalable vector. The num of elements is unknown at
473
  // compile-time.
474
11.9k
  if (isa<ScalableVectorType>(V1VTy))
475
0
    return nullptr;
476
477
11.9k
  unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
478
479
  // Loop over the shuffle mask, evaluating each element.
480
11.9k
  SmallVector<Constant*, 32> Result;
481
57.4k
  for (unsigned i = 0; i != MaskNumElts; 
++i45.5k
) {
482
45.5k
    int Elt = Mask[i];
483
45.5k
    if (Elt == -1) {
484
7.53k
      Result.push_back(UndefValue::get(EltTy));
485
7.53k
      continue;
486
7.53k
    }
487
38.0k
    Constant *InElt;
488
38.0k
    if (unsigned(Elt) >= SrcNumElts*2)
489
0
      InElt = UndefValue::get(EltTy);
490
38.0k
    else if (unsigned(Elt) >= SrcNumElts) {
491
1.59k
      Type *Ty = IntegerType::get(V2->getContext(), 32);
492
1.59k
      InElt =
493
1.59k
        ConstantExpr::getExtractElement(V2,
494
1.59k
                                        ConstantInt::get(Ty, Elt - SrcNumElts));
495
36.4k
    } else {
496
36.4k
      Type *Ty = IntegerType::get(V1->getContext(), 32);
497
36.4k
      InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
498
36.4k
    }
499
38.0k
    Result.push_back(InElt);
500
38.0k
  }
501
502
11.9k
  return ConstantVector::get(Result);
503
11.9k
}
504
505
Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
506
338k
                                                    ArrayRef<unsigned> Idxs) {
507
  // Base case: no indices, so return the entire value.
508
338k
  if (Idxs.empty())
509
169k
    return Agg;
510
511
169k
  if (Constant *C = Agg->getAggregateElement(Idxs[0]))
512
169k
    return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
513
514
0
  return nullptr;
515
169k
}
516
517
Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
518
                                                   Constant *Val,
519
523k
                                                   ArrayRef<unsigned> Idxs) {
520
  // Base case: no indices, so replace the entire value.
521
523k
  if (Idxs.empty())
522
261k
    return Val;
523
524
261k
  unsigned NumElts;
525
261k
  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
526
261k
    NumElts = ST->getNumElements();
527
0
  else
528
0
    NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
529
530
261k
  SmallVector<Constant*, 32> Result;
531
785k
  for (unsigned i = 0; i != NumElts; 
++i523k
) {
532
523k
    Constant *C = Agg->getAggregateElement(i);
533
523k
    if (!C) 
return nullptr0
;
534
535
523k
    if (Idxs[0] == i)
536
261k
      C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
537
538
523k
    Result.push_back(C);
539
523k
  }
540
541
261k
  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
542
261k
    return ConstantStruct::get(ST, Result);
543
0
  return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
544
261k
}
545
546
28.3k
Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
547
28.3k
  assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
548
549
  // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
550
  // vectors are always evaluated per element.
551
28.3k
  bool IsScalableVector = isa<ScalableVectorType>(C->getType());
552
28.3k
  bool HasScalarUndefOrScalableVectorUndef =
553
28.3k
      (!C->getType()->isVectorTy() || 
IsScalableVector2.76k
) &&
isa<UndefValue>(C)25.6k
;
554
555
28.3k
  if (HasScalarUndefOrScalableVectorUndef) {
556
55
    switch (static_cast<Instruction::UnaryOps>(Opcode)) {
557
55
    case Instruction::FNeg:
558
55
      return C; // -undef -> undef
559
0
    case Instruction::UnaryOpsEnd:
560
0
      llvm_unreachable("Invalid UnaryOp");
561
55
    }
562
55
  }
563
564
  // Constant should not be UndefValue, unless these are vector constants.
565
28.3k
  assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
566
  // We only have FP UnaryOps right now.
567
28.3k
  assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
568
569
28.3k
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
570
25.5k
    const APFloat &CV = CFP->getValueAPF();
571
25.5k
    switch (Opcode) {
572
0
    default:
573
0
      break;
574
25.5k
    case Instruction::FNeg:
575
25.5k
      return ConstantFP::get(C->getType(), neg(CV));
576
25.5k
    }
577
25.5k
  } else 
if (auto *2.76k
VTy2.76k
= dyn_cast<VectorType>(C->getType())) {
578
    // Fast path for splatted constants.
579
2.76k
    if (Constant *Splat = C->getSplatValue())
580
2.72k
      if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat))
581
2.72k
        return ConstantVector::getSplat(VTy->getElementCount(), Elt);
582
583
44
    if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
584
      // Fold each element and create a vector constant from those constants.
585
44
      Type *Ty = IntegerType::get(FVTy->getContext(), 32);
586
44
      SmallVector<Constant *, 16> Result;
587
206
      for (unsigned i = 0, e = FVTy->getNumElements(); i != e; 
++i162
) {
588
162
        Constant *ExtractIdx = ConstantInt::get(Ty, i);
589
162
        Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
590
162
        Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt);
591
162
        if (!Res)
592
0
          return nullptr;
593
162
        Result.push_back(Res);
594
162
      }
595
596
44
      return ConstantVector::get(Result);
597
44
    }
598
44
  }
599
600
  // We don't know how to fold this.
601
0
  return nullptr;
602
28.3k
}
603
604
Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
605
88.7M
                                              Constant *C2) {
606
88.7M
  assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
607
608
  // Simplify BinOps with their identity values first. They are no-ops and we
609
  // can always return the other value, including undef or poison values.
610
88.7M
  if (Constant *Identity = ConstantExpr::getBinOpIdentity(
611
88.7M
          Opcode, C1->getType(), /*AllowRHSIdentity*/ false)) {
612
57.2M
    if (C1 == Identity)
613
8.28M
      return C2;
614
48.9M
    if (C2 == Identity)
615
506k
      return C1;
616
48.9M
  } else 
if (Constant *31.5M
Identity31.5M
= ConstantExpr::getBinOpIdentity(
617
31.5M
                 Opcode, C1->getType(), /*AllowRHSIdentity*/ true)) {
618
30.5M
    if (C2 == Identity)
619
6.39M
      return C1;
620
30.5M
  }
621
622
  // Binary operations propagate poison.
623
73.6M
  if (isa<PoisonValue>(C1) || 
isa<PoisonValue>(C2)73.5M
)
624
26.6k
    return PoisonValue::get(C1->getType());
625
626
  // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
627
  // vectors are always evaluated per element.
628
73.5M
  bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
629
73.5M
  bool HasScalarUndefOrScalableVectorUndef =
630
73.5M
      (!C1->getType()->isVectorTy() || 
IsScalableVector76.4k
) &&
631
73.5M
      
(73.5M
isa<UndefValue>(C1)73.5M
||
isa<UndefValue>(C2)73.2M
);
632
73.5M
  if (HasScalarUndefOrScalableVectorUndef) {
633
299k
    switch (static_cast<Instruction::BinaryOps>(Opcode)) {
634
25.3k
    case Instruction::Xor:
635
25.3k
      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
636
        // Handle undef ^ undef -> 0 special case. This is a common
637
        // idiom (misuse).
638
36
        return Constant::getNullValue(C1->getType());
639
25.3k
      [[fallthrough]];
640
25.8k
    case Instruction::Add:
641
30.7k
    case Instruction::Sub:
642
30.7k
      return UndefValue::get(C1->getType());
643
243k
    case Instruction::And:
644
243k
      if (isa<UndefValue>(C1) && 
isa<UndefValue>(C2)243k
) // undef & undef -> undef
645
0
        return C1;
646
243k
      return Constant::getNullValue(C1->getType());   // undef & X -> 0
647
2.80k
    case Instruction::Mul: {
648
      // undef * undef -> undef
649
2.80k
      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
650
0
        return C1;
651
2.80k
      const APInt *CV;
652
      // X * undef -> undef   if X is odd
653
2.80k
      if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
654
2.80k
        if ((*CV)[0])
655
692
          return UndefValue::get(C1->getType());
656
657
      // X * undef -> 0       otherwise
658
2.11k
      return Constant::getNullValue(C1->getType());
659
2.80k
    }
660
237
    case Instruction::SDiv:
661
578
    case Instruction::UDiv:
662
      // X / undef -> poison
663
      // X / 0 -> poison
664
578
      if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
665
40
        return PoisonValue::get(C2->getType());
666
      // undef / X -> 0       otherwise
667
538
      return Constant::getNullValue(C1->getType());
668
215
    case Instruction::URem:
669
243
    case Instruction::SRem:
670
      // X % undef -> poison
671
      // X % 0 -> poison
672
243
      if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
673
0
        return PoisonValue::get(C2->getType());
674
      // undef % X -> 0       otherwise
675
243
      return Constant::getNullValue(C1->getType());
676
11.4k
    case Instruction::Or:                          // X | undef -> -1
677
11.4k
      if (isa<UndefValue>(C1) && 
isa<UndefValue>(C2)11.3k
) // undef | undef -> undef
678
1
        return C1;
679
11.4k
      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
680
6.61k
    case Instruction::LShr:
681
      // X >>l undef -> poison
682
6.61k
      if (isa<UndefValue>(C2))
683
1
        return PoisonValue::get(C2->getType());
684
      // undef >>l X -> 0
685
6.61k
      return Constant::getNullValue(C1->getType());
686
482
    case Instruction::AShr:
687
      // X >>a undef -> poison
688
482
      if (isa<UndefValue>(C2))
689
15
        return PoisonValue::get(C2->getType());
690
      // TODO: undef >>a X -> poison if the shift is exact
691
      // undef >>a X -> 0
692
467
      return Constant::getNullValue(C1->getType());
693
3.64k
    case Instruction::Shl:
694
      // X << undef -> undef
695
3.64k
      if (isa<UndefValue>(C2))
696
33
        return PoisonValue::get(C2->getType());
697
      // undef << X -> 0
698
3.61k
      return Constant::getNullValue(C1->getType());
699
0
    case Instruction::FSub:
700
      // -0.0 - undef --> undef (consistent with "fneg undef")
701
0
      if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
702
0
        return C2;
703
0
      [[fallthrough]];
704
8
    case Instruction::FAdd:
705
16
    case Instruction::FMul:
706
17
    case Instruction::FDiv:
707
17
    case Instruction::FRem:
708
      // [any flop] undef, undef -> undef
709
17
      if (isa<UndefValue>(C1) && 
isa<UndefValue>(C2)9
)
710
2
        return C1;
711
      // [any flop] C, undef -> NaN
712
      // [any flop] undef, C -> NaN
713
      // We could potentially specialize NaN/Inf constants vs. 'normal'
714
      // constants (possibly differently depending on opcode and operand). This
715
      // would allow returning undef sometimes. But it is always safe to fold to
716
      // NaN because we can choose the undef operand as NaN, and any FP opcode
717
      // with a NaN operand will propagate NaN.
718
15
      return ConstantFP::getNaN(C1->getType());
719
0
    case Instruction::BinaryOpsEnd:
720
0
      llvm_unreachable("Invalid BinaryOp");
721
299k
    }
722
299k
  }
723
724
  // Neither constant should be UndefValue, unless these are vector constants.
725
73.5M
  assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
726
727
  // Handle simplifications when the RHS is a constant int.
728
73.2M
  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
729
73.0M
    if (C2 == ConstantExpr::getBinOpAbsorber(Opcode, C2->getType(),
730
73.0M
                                             /*AllowLHSConstant*/ false))
731
35.1k
      return C2;
732
733
72.9M
    switch (Opcode) {
734
354k
    case Instruction::UDiv:
735
402k
    case Instruction::SDiv:
736
402k
      if (CI2->isZero())
737
970
        return PoisonValue::get(CI2->getType());              // X / 0 == poison
738
401k
      break;
739
923k
    case Instruction::URem:
740
937k
    case Instruction::SRem:
741
937k
      if (CI2->isOne())
742
123
        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
743
937k
      if (CI2->isZero())
744
46
        return PoisonValue::get(CI2->getType());              // X % 0 == poison
745
937k
      break;
746
5.74M
    case Instruction::And:
747
5.74M
      assert(!CI2->isZero() && "And zero handled above");
748
5.74M
      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
749
        // If and'ing the address of a global with a constant, fold it.
750
17.7k
        if (CE1->getOpcode() == Instruction::PtrToInt &&
751
17.7k
            
isa<GlobalValue>(CE1->getOperand(0))17.4k
) {
752
17.4k
          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
753
754
17.4k
          Align GVAlign; // defaults to 1
755
756
17.4k
          if (Module *TheModule = GV->getParent()) {
757
17.4k
            const DataLayout &DL = TheModule->getDataLayout();
758
17.4k
            GVAlign = GV->getPointerAlignment(DL);
759
760
            // If the function alignment is not specified then assume that it
761
            // is 4.
762
            // This is dangerous; on x86, the alignment of the pointer
763
            // corresponds to the alignment of the function, but might be less
764
            // than 4 if it isn't explicitly specified.
765
            // However, a fix for this behaviour was reverted because it
766
            // increased code size (see https://reviews.llvm.org/D55115)
767
            // FIXME: This code should be deleted once existing targets have
768
            // appropriate defaults
769
17.4k
            if (isa<Function>(GV) && 
!DL.getFunctionPtrAlign()2.05k
)
770
2.05k
              GVAlign = Align(4);
771
17.4k
          } else 
if (0
isa<GlobalVariable>(GV)0
) {
772
0
            GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne();
773
0
          }
774
775
17.4k
          if (GVAlign > 1) {
776
2.54k
            unsigned DstWidth = CI2->getBitWidth();
777
2.54k
            unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign));
778
2.54k
            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
779
780
            // If checking bits we know are clear, return zero.
781
2.54k
            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
782
2.05k
              return Constant::getNullValue(CI2->getType());
783
2.54k
          }
784
17.4k
        }
785
17.7k
      }
786
5.73M
      break;
787
72.9M
    }
788
72.9M
  } else 
if (251k
isa<ConstantInt>(C1)251k
) {
789
    // If C1 is a ConstantInt and C2 is not, swap the operands.
790
67.1k
    if (Instruction::isCommutative(Opcode))
791
65.9k
      return ConstantExpr::isDesirableBinOp(Opcode)
792
65.9k
                 ? 
ConstantExpr::get(Opcode, C2, C1)4.08k
793
65.9k
                 : 
ConstantFoldBinaryInstruction(Opcode, C2, C1)61.8k
;
794
67.1k
  }
795
796
73.1M
  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
797
72.7M
    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
798
72.7M
      const APInt &C1V = CI1->getValue();
799
72.7M
      const APInt &C2V = CI2->getValue();
800
72.7M
      switch (Opcode) {
801
0
      default:
802
0
        break;
803
7.90M
      case Instruction::Add:
804
7.90M
        return ConstantInt::get(C1->getType(), C1V + C2V);
805
14.8M
      case Instruction::Sub:
806
14.8M
        return ConstantInt::get(C1->getType(), C1V - C2V);
807
1.87M
      case Instruction::Mul:
808
1.87M
        return ConstantInt::get(C1->getType(), C1V * C2V);
809
354k
      case Instruction::UDiv:
810
354k
        assert(!CI2->isZero() && "Div by zero handled above");
811
354k
        return ConstantInt::get(CI1->getType(), C1V.udiv(C2V));
812
46.4k
      case Instruction::SDiv:
813
46.4k
        assert(!CI2->isZero() && "Div by zero handled above");
814
46.4k
        if (C2V.isAllOnes() && 
C1V.isMinSignedValue()37
)
815
0
          return PoisonValue::get(CI1->getType());   // MIN_INT / -1 -> poison
816
46.4k
        return ConstantInt::get(CI1->getType(), C1V.sdiv(C2V));
817
922k
      case Instruction::URem:
818
922k
        assert(!CI2->isZero() && "Div by zero handled above");
819
922k
        return ConstantInt::get(C1->getType(), C1V.urem(C2V));
820
14.5k
      case Instruction::SRem:
821
14.5k
        assert(!CI2->isZero() && "Div by zero handled above");
822
14.5k
        if (C2V.isAllOnes() && 
C1V.isMinSignedValue()11
)
823
0
          return PoisonValue::get(C1->getType()); // MIN_INT % -1 -> poison
824
14.5k
        return ConstantInt::get(C1->getType(), C1V.srem(C2V));
825
5.72M
      case Instruction::And:
826
5.72M
        return ConstantInt::get(C1->getType(), C1V & C2V);
827
3.33M
      case Instruction::Or:
828
3.33M
        return ConstantInt::get(C1->getType(), C1V | C2V);
829
28.9M
      case Instruction::Xor:
830
28.9M
        return ConstantInt::get(C1->getType(), C1V ^ C2V);
831
7.61M
      case Instruction::Shl:
832
7.61M
        if (C2V.ult(C1V.getBitWidth()))
833
7.61M
          return ConstantInt::get(C1->getType(), C1V.shl(C2V));
834
1.82k
        return PoisonValue::get(C1->getType()); // too big shift is poison
835
1.05M
      case Instruction::LShr:
836
1.05M
        if (C2V.ult(C1V.getBitWidth()))
837
1.05M
          return ConstantInt::get(C1->getType(), C1V.lshr(C2V));
838
152
        return PoisonValue::get(C1->getType()); // too big shift is poison
839
113k
      case Instruction::AShr:
840
113k
        if (C2V.ult(C1V.getBitWidth()))
841
113k
          return ConstantInt::get(C1->getType(), C1V.ashr(C2V));
842
2
        return PoisonValue::get(C1->getType()); // too big shift is poison
843
72.7M
      }
844
72.7M
    }
845
846
1.23k
    if (C1 == ConstantExpr::getBinOpAbsorber(Opcode, C1->getType(),
847
1.23k
                                             /*AllowLHSConstant*/ true))
848
54
      return C1;
849
375k
  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
850
106k
    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
851
106k
      const APFloat &C1V = CFP1->getValueAPF();
852
106k
      const APFloat &C2V = CFP2->getValueAPF();
853
106k
      APFloat C3V = C1V;  // copy for modification
854
106k
      switch (Opcode) {
855
0
      default:
856
0
        break;
857
19.2k
      case Instruction::FAdd:
858
19.2k
        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
859
19.2k
        return ConstantFP::get(C1->getType(), C3V);
860
5.18k
      case Instruction::FSub:
861
5.18k
        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
862
5.18k
        return ConstantFP::get(C1->getType(), C3V);
863
42.4k
      case Instruction::FMul:
864
42.4k
        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
865
42.4k
        return ConstantFP::get(C1->getType(), C3V);
866
39.5k
      case Instruction::FDiv:
867
39.5k
        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
868
39.5k
        return ConstantFP::get(C1->getType(), C3V);
869
29
      case Instruction::FRem:
870
29
        (void)C3V.mod(C2V);
871
29
        return ConstantFP::get(C1->getType(), C3V);
872
106k
      }
873
106k
    }
874
106k
  }
875
876
270k
  if (auto *VTy = dyn_cast<VectorType>(C1->getType())) {
877
    // Fast path for splatted constants.
878
76.4k
    if (Constant *C2Splat = C2->getSplatValue()) {
879
75.2k
      if (Instruction::isIntDivRem(Opcode) && 
C2Splat->isNullValue()6.27k
)
880
0
        return PoisonValue::get(VTy);
881
75.2k
      if (Constant *C1Splat = C1->getSplatValue()) {
882
74.5k
        Constant *Res =
883
74.5k
            ConstantExpr::isDesirableBinOp(Opcode)
884
74.5k
                ? 
ConstantExpr::get(Opcode, C1Splat, C2Splat)12.2k
885
74.5k
                : 
ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat)62.3k
;
886
74.5k
        if (!Res)
887
0
          return nullptr;
888
74.5k
        return ConstantVector::getSplat(VTy->getElementCount(), Res);
889
74.5k
      }
890
75.2k
    }
891
892
1.80k
    if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
893
      // Fold each element and create a vector constant from those constants.
894
1.80k
      SmallVector<Constant*, 16> Result;
895
1.80k
      Type *Ty = IntegerType::get(FVTy->getContext(), 32);
896
20.4k
      for (unsigned i = 0, e = FVTy->getNumElements(); i != e; 
++i18.6k
) {
897
18.6k
        Constant *ExtractIdx = ConstantInt::get(Ty, i);
898
18.6k
        Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
899
18.6k
        Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
900
18.6k
        Constant *Res = ConstantExpr::isDesirableBinOp(Opcode)
901
18.6k
                            ? 
ConstantExpr::get(Opcode, LHS, RHS)11.1k
902
18.6k
                            : 
ConstantFoldBinaryInstruction(Opcode, LHS, RHS)7.44k
;
903
18.6k
        if (!Res)
904
0
          return nullptr;
905
18.6k
        Result.push_back(Res);
906
18.6k
      }
907
908
1.80k
      return ConstantVector::get(Result);
909
1.80k
    }
910
1.80k
  }
911
912
193k
  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
913
    // There are many possible foldings we could do here.  We should probably
914
    // at least fold add of a pointer with an integer into the appropriate
915
    // getelementptr.  This will improve alias analysis a bit.
916
917
    // Given ((a + b) + c), if (b + c) folds to something interesting, return
918
    // (a + (b + c)).
919
192k
    if (Instruction::isAssociative(Opcode) && 
CE1->getOpcode() == Opcode145k
) {
920
25
      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
921
25
      if (!isa<ConstantExpr>(T) || 
cast<ConstantExpr>(T)->getOpcode() != Opcode0
)
922
25
        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
923
25
    }
924
192k
  } else 
if (1.18k
isa<ConstantExpr>(C2)1.18k
) {
925
    // If C2 is a constant expr and C1 isn't, flop them around and fold the
926
    // other way if possible.
927
1.18k
    if (Instruction::isCommutative(Opcode))
928
0
      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
929
1.18k
  }
930
931
  // i1 can be simplified in many cases.
932
193k
  if (C1->getType()->isIntegerTy(1)) {
933
0
    switch (Opcode) {
934
0
    case Instruction::Add:
935
0
    case Instruction::Sub:
936
0
      return ConstantExpr::getXor(C1, C2);
937
0
    case Instruction::Shl:
938
0
    case Instruction::LShr:
939
0
    case Instruction::AShr:
940
      // We can assume that C2 == 0.  If it were one the result would be
941
      // undefined because the shift value is as large as the bitwidth.
942
0
      return C1;
943
0
    case Instruction::SDiv:
944
0
    case Instruction::UDiv:
945
      // We can assume that C2 == 1.  If it were zero the result would be
946
      // undefined through division by zero.
947
0
      return C1;
948
0
    case Instruction::URem:
949
0
    case Instruction::SRem:
950
      // We can assume that C2 == 1.  If it were zero the result would be
951
      // undefined through division by zero.
952
0
      return ConstantInt::getFalse(C1->getContext());
953
0
    default:
954
0
      break;
955
0
    }
956
0
  }
957
958
  // We don't know how to fold this.
959
193k
  return nullptr;
960
193k
}
961
962
static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
963
226k
                                                      const GlobalValue *GV2) {
964
450k
  auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
965
450k
    if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
966
1.22k
      return true;
967
448k
    if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
968
418k
      Type *Ty = GVar->getValueType();
969
      // A global with opaque type might end up being zero sized.
970
418k
      if (!Ty->isSized())
971
0
        return true;
972
      // A global with an empty type might lie at the address of any other
973
      // global.
974
418k
      if (Ty->isEmptyTy())
975
2.14k
        return true;
976
418k
    }
977
446k
    return false;
978
448k
  };
979
  // Don't try to decide equality of aliases.
980
226k
  if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
981
226k
    if (!isGlobalUnsafeForEquality(GV1) && 
!isGlobalUnsafeForEquality(GV2)223k
)
982
223k
      return ICmpInst::ICMP_NE;
983
3.36k
  return ICmpInst::BAD_ICMP_PREDICATE;
984
226k
}
985
986
/// This function determines if there is anything we can decide about the two
987
/// constants provided. This doesn't need to handle simple things like integer
988
/// comparisons, but should instead handle ConstantExprs and GlobalValues.
989
/// If we can determine that the two constants have a particular relation to
990
/// each other, we should return the corresponding ICmp predicate, otherwise
991
/// return ICmpInst::BAD_ICMP_PREDICATE.
992
10.5M
static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) {
993
10.5M
  assert(V1->getType() == V2->getType() &&
994
10.5M
         "Cannot compare different types of values!");
995
10.5M
  if (V1 == V2) 
return ICmpInst::ICMP_EQ7.82M
;
996
997
  // The following folds only apply to pointers.
998
2.71M
  if (!V1->getType()->isPointerTy())
999
2.21k
    return ICmpInst::BAD_ICMP_PREDICATE;
1000
1001
  // To simplify this code we canonicalize the relation so that the first
1002
  // operand is always the most "complex" of the two.  We consider simple
1003
  // constants (like ConstantPointerNull) to be the simplest, followed by
1004
  // BlockAddress, GlobalValues, and ConstantExpr's (the most complex).
1005
5.41M
  
auto GetComplexity = [](Constant *V) 2.70M
{
1006
5.41M
    if (isa<ConstantExpr>(V))
1007
79.1k
      return 3;
1008
5.34M
    if (isa<GlobalValue>(V))
1009
2.86M
      return 2;
1010
2.47M
    if (isa<BlockAddress>(V))
1011
510
      return 1;
1012
2.47M
    return 0;
1013
2.47M
  };
1014
2.70M
  if (GetComplexity(V1) < GetComplexity(V2)) {
1015
224k
    ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1);
1016
224k
    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1017
224k
      return ICmpInst::getSwappedPredicate(SwappedRelation);
1018
0
    return ICmpInst::BAD_ICMP_PREDICATE;
1019
224k
  }
1020
1021
2.48M
  if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1022
    // Now we know that the RHS is a BlockAddress or simple constant.
1023
255
    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1024
      // Block address in another function can't equal this one, but block
1025
      // addresses in the current function might be the same if blocks are
1026
      // empty.
1027
255
      if (BA2->getFunction() != BA->getFunction())
1028
0
        return ICmpInst::ICMP_NE;
1029
255
    } else 
if (0
isa<ConstantPointerNull>(V2)0
) {
1030
0
      return ICmpInst::ICMP_NE;
1031
0
    }
1032
2.48M
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1033
    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1034
    // constant.
1035
2.40M
    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1036
226k
      return areGlobalsPotentiallyEqual(GV, GV2);
1037
2.18M
    } else if (isa<BlockAddress>(V2)) {
1038
0
      return ICmpInst::ICMP_NE; // Globals never equal labels.
1039
2.18M
    } else if (isa<ConstantPointerNull>(V2)) {
1040
      // GlobalVals can never be null unless they have external weak linkage.
1041
      // We don't try to evaluate aliases here.
1042
      // NOTE: We should not be doing this constant folding if null pointer
1043
      // is considered valid for the function. But currently there is no way to
1044
      // query it from the Constant type.
1045
2.18M
      if (!GV->hasExternalWeakLinkage() && 
!isa<GlobalAlias>(GV)1.53M
&&
1046
2.18M
          !NullPointerIsDefined(nullptr /* F */,
1047
1.53M
                                GV->getType()->getAddressSpace()))
1048
1.53M
        return ICmpInst::ICMP_UGT;
1049
2.18M
    }
1050
2.40M
  } else 
if (auto *78.4k
CE178.4k
= dyn_cast<ConstantExpr>(V1)) {
1051
    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1052
    // constantexpr, a global, block address, or a simple constant.
1053
78.4k
    Constant *CE1Op0 = CE1->getOperand(0);
1054
1055
78.4k
    switch (CE1->getOpcode()) {
1056
74.6k
    case Instruction::GetElementPtr: {
1057
74.6k
      GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1058
      // Ok, since this is a getelementptr, we know that the constant has a
1059
      // pointer type.  Check the various cases.
1060
74.6k
      if (isa<ConstantPointerNull>(V2)) {
1061
        // If we are comparing a GEP to a null pointer, check to see if the base
1062
        // of the GEP equals the null pointer.
1063
73.4k
        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1064
          // If its not weak linkage, the GVal must have a non-zero address
1065
          // so the result is greater-than
1066
73.4k
          if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds())
1067
73.4k
            return ICmpInst::ICMP_UGT;
1068
73.4k
        }
1069
73.4k
      } else 
if (const GlobalValue *1.19k
GV21.19k
= dyn_cast<GlobalValue>(V2)) {
1070
486
        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1071
486
          if (GV != GV2) {
1072
476
            if (CE1GEP->hasAllZeroIndices())
1073
0
              return areGlobalsPotentiallyEqual(GV, GV2);
1074
476
            return ICmpInst::BAD_ICMP_PREDICATE;
1075
476
          }
1076
486
        }
1077
713
      } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) {
1078
        // By far the most common case to handle is when the base pointers are
1079
        // obviously to the same global.
1080
600
        const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand());
1081
600
        if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1082
          // Don't know relative ordering, but check for inequality.
1083
600
          if (CE1Op0 != CE2Op0) {
1084
597
            if (CE1GEP->hasAllZeroIndices() && 
CE2GEP->hasAllZeroIndices()0
)
1085
0
              return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1086
0
                                                cast<GlobalValue>(CE2Op0));
1087
597
            return ICmpInst::BAD_ICMP_PREDICATE;
1088
597
          }
1089
600
        }
1090
600
      }
1091
165
      break;
1092
74.6k
    }
1093
3.76k
    default:
1094
3.76k
      break;
1095
78.4k
    }
1096
78.4k
  }
1097
1098
648k
  return ICmpInst::BAD_ICMP_PREDICATE;
1099
2.48M
}
1100
1101
Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate,
1102
39.2M
                                               Constant *C1, Constant *C2) {
1103
39.2M
  Type *ResultTy;
1104
39.2M
  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1105
22.1k
    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1106
22.1k
                               VT->getElementCount());
1107
39.2M
  else
1108
39.2M
    ResultTy = Type::getInt1Ty(C1->getContext());
1109
1110
  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1111
39.2M
  if (Predicate == FCmpInst::FCMP_FALSE)
1112
0
    return Constant::getNullValue(ResultTy);
1113
1114
39.2M
  if (Predicate == FCmpInst::FCMP_TRUE)
1115
0
    return Constant::getAllOnesValue(ResultTy);
1116
1117
  // Handle some degenerate cases first
1118
39.2M
  if (isa<PoisonValue>(C1) || 
isa<PoisonValue>(C2)39.2M
)
1119
62.9k
    return PoisonValue::get(ResultTy);
1120
1121
39.2M
  if (isa<UndefValue>(C1) || 
isa<UndefValue>(C2)38.7M
) {
1122
443k
    bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1123
    // For EQ and NE, we can always pick a value for the undef to make the
1124
    // predicate pass or fail, so we can return undef.
1125
    // Also, if both operands are undef, we can return undef for int comparison.
1126
443k
    if (ICmpInst::isEquality(Predicate) || 
(19.8k
isIntegerPredicate19.8k
&&
C1 == C217.9k
))
1127
423k
      return UndefValue::get(ResultTy);
1128
1129
    // Otherwise, for integer compare, pick the same value as the non-undef
1130
    // operand, and fold it to true or false.
1131
19.5k
    if (isIntegerPredicate)
1132
17.7k
      return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1133
1134
    // Choosing NaN for the undef will always make unordered comparison succeed
1135
    // and ordered comparison fails.
1136
1.83k
    return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1137
19.5k
  }
1138
1139
38.7M
  if (C2->isNullValue()) {
1140
    // The caller is expected to commute the operands if the constant expression
1141
    // is C2.
1142
    // C1 >= 0 --> true
1143
23.6M
    if (Predicate == ICmpInst::ICMP_UGE)
1144
511
      return Constant::getAllOnesValue(ResultTy);
1145
    // C1 < 0 --> false
1146
23.6M
    if (Predicate == ICmpInst::ICMP_ULT)
1147
25.9k
      return Constant::getNullValue(ResultTy);
1148
23.6M
  }
1149
1150
  // If the comparison is a comparison between two i1's, simplify it.
1151
38.7M
  if (C1->getType()->isIntOrIntVectorTy(1)) {
1152
253k
    switch (Predicate) {
1153
8.38k
    case ICmpInst::ICMP_EQ:
1154
8.38k
      if (isa<ConstantExpr>(C1))
1155
0
        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1156
8.38k
      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1157
36
    case ICmpInst::ICMP_NE:
1158
36
      return ConstantExpr::getXor(C1, C2);
1159
244k
    default:
1160
244k
      break;
1161
253k
    }
1162
253k
  }
1163
1164
38.7M
  if (isa<ConstantInt>(C1) && 
isa<ConstantInt>(C2)28.2M
) {
1165
28.2M
    const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1166
28.2M
    const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1167
28.2M
    return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate));
1168
28.2M
  } else 
if (10.4M
isa<ConstantFP>(C1)10.4M
&&
isa<ConstantFP>(C2)147k
) {
1169
147k
    const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1170
147k
    const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1171
147k
    return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate));
1172
10.3M
  } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
1173
1174
    // Fast path for splatted constants.
1175
22.1k
    if (Constant *C1Splat = C1->getSplatValue())
1176
22.1k
      if (Constant *C2Splat = C2->getSplatValue())
1177
22.0k
        if (Constant *Elt =
1178
22.0k
                ConstantFoldCompareInstruction(Predicate, C1Splat, C2Splat))
1179
22.0k
          return ConstantVector::getSplat(C1VTy->getElementCount(), Elt);
1180
1181
    // Do not iterate on scalable vector. The number of elements is unknown at
1182
    // compile-time.
1183
62
    if (isa<ScalableVectorType>(C1VTy))
1184
0
      return nullptr;
1185
1186
    // If we can constant fold the comparison of each element, constant fold
1187
    // the whole vector comparison.
1188
62
    SmallVector<Constant*, 4> ResElts;
1189
62
    Type *Ty = IntegerType::get(C1->getContext(), 32);
1190
    // Compare the elements, producing an i1 result or constant expr.
1191
62
    for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1192
616
         I != E; 
++I554
) {
1193
554
      Constant *C1E =
1194
554
          ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I));
1195
554
      Constant *C2E =
1196
554
          ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I));
1197
554
      Constant *Elt = ConstantFoldCompareInstruction(Predicate, C1E, C2E);
1198
554
      if (!Elt)
1199
0
        return nullptr;
1200
1201
554
      ResElts.push_back(Elt);
1202
554
    }
1203
1204
62
    return ConstantVector::get(ResElts);
1205
62
  }
1206
1207
10.3M
  if (C1->getType()->isFPOrFPVectorTy()) {
1208
0
    if (C1 == C2) {
1209
      // We know that C1 == C2 || isUnordered(C1, C2).
1210
0
      if (Predicate == FCmpInst::FCMP_ONE)
1211
0
        return ConstantInt::getFalse(ResultTy);
1212
0
      else if (Predicate == FCmpInst::FCMP_UEQ)
1213
0
        return ConstantInt::getTrue(ResultTy);
1214
0
    }
1215
10.3M
  } else {
1216
    // Evaluate the relation between the two constants, per the predicate.
1217
10.3M
    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1218
10.3M
    switch (evaluateICmpRelation(C1, C2)) {
1219
0
    default: llvm_unreachable("Unknown relational!");
1220
655k
    case ICmpInst::BAD_ICMP_PREDICATE:
1221
655k
      break;  // Couldn't determine anything about these constants.
1222
7.82M
    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1223
      // If we know the constants are equal, we can decide the result of this
1224
      // computation precisely.
1225
7.82M
      Result = ICmpInst::isTrueWhenEqual(Predicate);
1226
7.82M
      break;
1227
224k
    case ICmpInst::ICMP_ULT:
1228
224k
      switch (Predicate) {
1229
203k
      
case ICmpInst::ICMP_ULT: 3
case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1230
203k
        Result = 1; break;
1231
20.6k
      
case ICmpInst::ICMP_UGT: 44
case ICmpInst::ICMP_EQ: 20.6k
case ICmpInst::ICMP_UGE:
1232
20.6k
        Result = 0; break;
1233
0
      default:
1234
0
        break;
1235
224k
      }
1236
224k
      break;
1237
224k
    case ICmpInst::ICMP_SLT:
1238
0
      switch (Predicate) {
1239
0
      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1240
0
        Result = 1; break;
1241
0
      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1242
0
        Result = 0; break;
1243
0
      default:
1244
0
        break;
1245
0
      }
1246
0
      break;
1247
1.38M
    case ICmpInst::ICMP_UGT:
1248
1.38M
      switch (Predicate) {
1249
116k
      
case ICmpInst::ICMP_UGT: 12
case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1250
116k
        Result = 1; break;
1251
1.26M
      
case ICmpInst::ICMP_ULT: 0
case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1252
1.26M
        Result = 0; break;
1253
0
      default:
1254
0
        break;
1255
1.38M
      }
1256
1.38M
      break;
1257
1.38M
    case ICmpInst::ICMP_SGT:
1258
0
      switch (Predicate) {
1259
0
      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1260
0
        Result = 1; break;
1261
0
      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1262
0
        Result = 0; break;
1263
0
      default:
1264
0
        break;
1265
0
      }
1266
0
      break;
1267
0
    case ICmpInst::ICMP_ULE:
1268
0
      if (Predicate == ICmpInst::ICMP_UGT)
1269
0
        Result = 0;
1270
0
      if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE)
1271
0
        Result = 1;
1272
0
      break;
1273
0
    case ICmpInst::ICMP_SLE:
1274
0
      if (Predicate == ICmpInst::ICMP_SGT)
1275
0
        Result = 0;
1276
0
      if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE)
1277
0
        Result = 1;
1278
0
      break;
1279
0
    case ICmpInst::ICMP_UGE:
1280
0
      if (Predicate == ICmpInst::ICMP_ULT)
1281
0
        Result = 0;
1282
0
      if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE)
1283
0
        Result = 1;
1284
0
      break;
1285
0
    case ICmpInst::ICMP_SGE:
1286
0
      if (Predicate == ICmpInst::ICMP_SLT)
1287
0
        Result = 0;
1288
0
      if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE)
1289
0
        Result = 1;
1290
0
      break;
1291
223k
    case ICmpInst::ICMP_NE:
1292
223k
      if (Predicate == ICmpInst::ICMP_EQ)
1293
198k
        Result = 0;
1294
223k
      if (Predicate == ICmpInst::ICMP_NE)
1295
24.4k
        Result = 1;
1296
223k
      break;
1297
10.3M
    }
1298
1299
    // If we evaluated the result, return it now.
1300
10.3M
    if (Result != -1)
1301
9.65M
      return ConstantInt::get(ResultTy, Result);
1302
1303
655k
    if ((!isa<ConstantExpr>(C1) && 
isa<ConstantExpr>(C2)648k
) ||
1304
655k
        (C1->isNullValue() && 
!C2->isNullValue()0
)) {
1305
      // If C2 is a constant expr and C1 isn't, flip them around and fold the
1306
      // other way if possible.
1307
      // Also, if C1 is null and C2 isn't, flip them around.
1308
0
      Predicate = ICmpInst::getSwappedPredicate(Predicate);
1309
0
      return ConstantFoldCompareInstruction(Predicate, C2, C1);
1310
0
    }
1311
655k
  }
1312
655k
  return nullptr;
1313
10.3M
}
1314
1315
Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
1316
                                          std::optional<ConstantRange> InRange,
1317
13.8M
                                          ArrayRef<Value *> Idxs) {
1318
13.8M
  if (Idxs.empty()) 
return C0
;
1319
1320
13.8M
  Type *GEPTy = GetElementPtrInst::getGEPReturnType(
1321
13.8M
      C, ArrayRef((Value *const *)Idxs.data(), Idxs.size()));
1322
1323
13.8M
  if (isa<PoisonValue>(C))
1324
72
    return PoisonValue::get(GEPTy);
1325
1326
13.8M
  if (isa<UndefValue>(C))
1327
24
    return UndefValue::get(GEPTy);
1328
1329
13.8M
  auto IsNoOp = [&]() {
1330
    // Avoid losing inrange information.
1331
13.8M
    if (InRange)
1332
3.34M
      return false;
1333
1334
11.1M
    
return all_of(Idxs, [](Value *Idx) 10.4M
{
1335
11.1M
      Constant *IdxC = cast<Constant>(Idx);
1336
11.1M
      return IdxC->isNullValue() || 
isa<UndefValue>(IdxC)10.3M
;
1337
11.1M
    });
1338
13.8M
  };
1339
13.8M
  if (IsNoOp())
1340
82.1k
    return GEPTy->isVectorTy() && 
!C->getType()->isVectorTy()0
1341
82.1k
               ? ConstantVector::getSplat(
1342
0
                     cast<VectorType>(GEPTy)->getElementCount(), C)
1343
82.1k
               : C;
1344
1345
13.7M
  return nullptr;
1346
13.8M
}